An 8-16 Gb/s, 0.65-1.05 pJ/b, Voltage-Mode Transmitter With Analog Impedance Modulation Equalization and Sub-3 ns Power-State Transitioning
نویسندگان
چکیده
Serial link transmitters which efficiently incorporate equalization, while also enabling fast power-state transitioning to leverage dynamic power scaling, are necessary to meet future systems’ I/O requirements. This paper presents a scalable voltage-mode transmitter which offers low static power dissipation and adopts an impedance-modulated 2-tap equalizer with analog tap control, thereby obviating driver segmentation and reducing pre-driver complexity and dynamic power. Topologies that allow for rapid power-up/down, including a replica-biased voltage regulator to power the output stages of multiple transmit channels and per-channel quadrature clock generation with injection-locked oscillators (ILO), enable fast power-state transitioning. Energy efficiency is further improved with capacitively driven low-swing global clock distribution and supply scaling at lower data rates, while output eye quality is maintained at low voltages with automatic phase calibration of the local ILO-generated quarter-rate clocks. A prototype fabricated in a general purpose 65 nm CMOS process includes a 2 mm global clock distribution network and two transmitters that support an output swing range of 100–300 mV with up to 12 dB of equalization. The transmitters achieve 8–16 Gb/s operation at 0.65–1.05 pJ/b energy efficiency and sub-3 ns power-up/down times.
منابع مشابه
A Maximum-Likelihood Sequence Detection Powered ADC-Based Serial Link
A 0.88 mm2 65-nm analog-to-digital converter (ADC)-based serial link transceiver is designed with a maximum-likelihood sequence detector (MLSD) for robust equalization. The MLSD is optimized in a pipelined look-ahead architecture to reach 10 Gb/s at 5.8 pJ/b and 5 Gb/s at 3.9 pJ/b, making it practical for an energy-efficient ADC-based serial link. Compared with linear equalizer and decision fee...
متن کاملA 0.47-0.66 pJ/bit, 4.8-8 Gb/s I/O Transceiver in 65 nm CMOS
A low-power forwarded-clock I/O transceiver architecture is presented that employs a high degree of output/input multiplexing, supply-voltage scaling with data rate, and low-voltage circuit techniques to enable low-power operation. The transmitter utilizes a 4:1 output multiplexing voltage-mode driver along with 4-phase clocking that is efficiently generated from a passive poly-phase filter. Th...
متن کاملA 5-8 Gb/s low-power transmitter with 2-tap pre-emphasis based on toggling serialization
We demonstrate a low-power wireline transmitter with 2-tap pre-emphasis in which serialization is achieved by toggling serializer with data transition information extracted from parallel input data. This novel technique of serialization provides significantly reduced power consumption since it does not need the short pulse generation block required in the conventional serializer. In addition, t...
متن کاملAn 8 Gb/s-64 Mb/s, 2.3-4.2 mW/Gb/s Burst-Mode Transmitter in 90 nm CMOS
A burst-mode transmitter achieves 6 ns turn-on time by utilizing a fast frequency settling ring oscillator in digital multiplying delay-locked loop and a rapid on-off biasing scheme for current mode output driver. The resistor tuning-based ring oscillator avoids the use of bias voltages and thereby eliminates the related settling time overhead. The calibrated rapid on-off biasing circuit utiliz...
متن کاملISSCC 2010 / SESSION 8 / HIGH - SPEED WIRELINE TRANSCEIVERS / 8 . 8 8 . 8 A 20 Gb / s 40 mW Equalizer in 90 nm CMOS Technology
In order to reduce the pin count of chips and the complexity of the routing on printed-circuit boards and backplanes, it is desirable to replace a large number of parallel channels with a few serial links. Such a transformation can also potentially save significant power because it lowers the number of output drivers while maintaining the I/O voltage swings and termination impedances relatively...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Solid-State Circuits
دوره 49 شماره
صفحات -
تاریخ انتشار 2014